The effect of special exercises for the retracting fingers
to developing performance and aiming accuracy
among emerging archery players

Dr. Kareem Hamad Kadhim

DOI: https://doi.org/10.33545/27077012.2023.v4.i2c.212

Abstract
The research included an introduction showing the importance of the hand in the game archery in determining the path, directing the arrow, launching power, and agility in performance. The problem of the research lies in the presence of weakness among emerging players in controlling the fingers of the hand and thus weakness in performance and accuracy of aiming. The importance of the research lies in preparing special exercises for the pulling fingers due to their effect on aiming accuracy. The objectives of the research are to prepare special exercises for the fingers and to know the effect of these exercises on the accuracy of aiming. As for the research hypotheses, there are statistically significant differences between the pre- and post-tests with the correction test, in favor of the post-test for the research sample. The sample was chosen intentionally, represented by amanat Baghdad Club archery players for juniors. The researcher adopted the one-group experimental method with pre- and post-tests. The researcher conducted the exploratory experiment and then conducted the pre-tests. After applying the finger exercises, which took (8) weeks, the post-tests were conducted under conditions similar to the pre-tests. After transcribing the data, the statistical program spss was used, and the data was then presented in tables and then discussed, which resulted in the following conclusions that the exercises for the pulling fingers had a positive impact on developing performance in shooting accuracy. As for the recommendations, the researcher recommends using these exercises for other categories with the archery for both genders, and it can be used in other individual and group activities because it has an effective positive impact.

Keywords: Pulling fingers, aiming accuracy, archery

1. Introduction
The game of archery is one of the individual games that is characterized by accuracy and concentration, and it has special requirements, such as endurance, strength, flexibility, and agility of movement, which must perform the entire movement smoothly and gracefully. This game depends mainly on the arms, especially the hand. Depending on its structure, the hand allows it to perform most activities and motor skills, as one hand holds the bow and the other pulls the arrow for quite long periods of time without signs of fatigue appearing. All of this requires arms with a strong grip. The fingers of the pulling hand have a very important role in terms of the special technique that determines the direction, height and strength of the release. The hand represents part of the upper end from the carpal joint to the end of the fingers and has a major role in relation to all the functions of the upper limb. The anatomical structure of the hand provides smooth and fluid movements of the fist and others. Accurate and complex through the interactions resulting from good coordination between the muscular system of the hand and the central nervous system” (1: 424). From here comes the importance of the research in devoting part of the training unit to exercises for the fingers of the retracting hand that include strength as well as coordination and flexibility exercises.

1.1 Research Problem
Playing archery has many requirements, including the endurance of the arms and hands in particular. Through the results of the archery tournaments, the researcher noticed the low level of youth results, and that the researcher is a former international player and also a coach. He saw that there was a weakness in the accuracy of shooting among the youth players, one of the reasons for which was the weakness of the pulling hand and rapid fatigue in the fingers of the pulling hand, which led to weak shooting accuracy.
Therefore, the researcher decided to solve this problem by preparing special exercises that include (strength, flexibility, and compatibility) for the fingers of the pulling hand, because they have the ability to direct, adjust the path, and endure performance, and as a result, they affect performance, accuracy of shooting, and the final results in the number of points that will be collected from accurate shooting.

1.2 Research objective
1. Preparing special exercises for the retracting fingers, including (strength, flexibility, coordination).
2. Identify the effect of these exercises on performance and accuracy of aiming.

1.3 Research hypotheses
1. There is a statistically significant correlation between grip strength and aiming accuracy.
2. There is a statistically significant correlation between hand flexibility and aiming accuracy.
3. There is a statistically significant correlation between hand-eye coordination and aiming accuracy.
4. There are statistically significant differences for the pre- and post-tests in accuracy of aiming, in favor of the post-test.

1.4 Research fields
1.4.1 Human field: (10) players representing Amanat Baghdad Junior Club, aged (15-17) years for the season (2022-2023).
1.4.2 Time field: From 16/7/2023 to 12/9/2023.
1.4.3 Spatial field: Amanat Baghdad Arch and Arrow Club Stadium in Al-Zawraa Park.

2. Research methodology and field procedures
2.1 Research methodology
The research method is considered of great importance in scientific research because it evaluates and documents the research and its results are linked to the method followed by the researcher. Therefore, the researcher adopted the experimental method with one group with pre- and post-tests because it is more appropriate for the study. “The experimental method is one of the most accurate types of methods whose results can be adopted and generalized.” And its application, and it is not satisfied with existing phenomena and events, but rather studies the causes and factors behind their occurrence and tries to explain and analyze them, and its results can also be used to predict what phenomena will occur in the future” (7: 252-253).

2.2 The research community and its sample
The researcher chose the research sample intentionally, as the research sample was the players of the Amanat Baghdad club with archery, representing the club’s youth team, who numbered (10) players aged (15-17) years. The homogeneity process was conducted among the members of the research community in the variables (height, mass, training age, age) that share an influence with the independent variable for the purpose of controlling these variables to isolate their influence.

2.3 Devices and tools
- Arc devices (10).
- Tennis balls.
- Grip strength device.
- Paper goals (10).
- Measuring tape.
- Finger rubber device.
- Drivers number (5).
- Stopwatch.
- Clay clay.
- Number of shares (60).
- Colored cubes (scattered images).

2.4 Field research procedures
2.4.1 Determine tests
2.4.1.1 Aiming accuracy test
1-Throwing accuracy test (2:62)
- Purpose of the test: Calculating the results of the archery competition at a distance of 30 m (throwing accuracy).
- Tools: 6 arrows, a scoring board at a distance of 70 metres, paper targets, a stop watch.
- Performance specifications: Standing on the throwing line at a distance of (30 metres), (6) serves, each serve (6) arrows.
- Calculating points: The target is divided into ten circular areas, and each two areas are colored yellow (10 and 9), red (8 and 7), blue (6 and 5), black (4 and 3), white (2 and 1).

2.4.1.2 Hand grip test (dynamometer) (5:1).
- Purpose of the test: measuring grip strength (flexor muscles of the fingers, unit of measurement / kg).
- Tools: Dynamometer Grib.
- Performance specifications: Hold the dynamometer with the fist of the right hand (if the player uses the right hand), with the arm extended and close to the body, bent at the elbow at an angle of (90%).
- Register: Pressing the dynamometer with your fist to try to exert the maximum possible force (each pressure is counted as a point). Two attempts are given, the best of which is recorded.

2.4.1.3 The test is pushing a tennis ball with the finger of the hand (designed by the researcher).
- Purpose of the test: To measure the flexibility of the fingers.

Table 1: The homogeneity of the sample with variables (Length, age, mass, training age) shows the mean, standard deviation, and skewness coefficient. Significance level.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measuring unit</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Skewness</th>
<th>Sig. type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Cm</td>
<td>1.63</td>
<td>0.023</td>
<td>0.142</td>
<td>non-sig</td>
</tr>
<tr>
<td>Age</td>
<td>Year</td>
<td>16</td>
<td>0.816</td>
<td>0.000</td>
<td>non-sig</td>
</tr>
<tr>
<td>Mass</td>
<td>Kg</td>
<td>84.600</td>
<td>2.319</td>
<td>0.927</td>
<td>non-sig</td>
</tr>
<tr>
<td>Training age</td>
<td>Year</td>
<td>1.292</td>
<td>0.253</td>
<td>2.901</td>
<td>non-sig</td>
</tr>
</tbody>
</table>

~ 181 ~
Tools: Tennis ball, flat area, chair, measuring tape.

Performance specifications: The tester sits on the chair holding a tennis ball with one hand in front of the chest, and the torso must be adjacent to the edge of the chair. A rope is placed around the tester's chest so that it is held tightly from behind for the purpose of preventing the tester from moving forward while pushing the ball by hand.

Registration: The tester is given three consecutive attempts. His best attempt is calculated by measuring the distance between the front edge of the chair and the nearest point the ball places on the ground. And try to reach with your fingertips as far as possible (8: 189).

2.4.1.4 Hand and sight compatibility test (designed by the researcher).

Purpose of the test: to measure finger flexibility and eye-hand coordination.

Tools: Colored cards for a scattered picture, a table, a chair, a stopwatch.

Performance specifications: The tester sits on a chair with a table in front of him on which are scattered colored cubes. When he hears the whistle, he picks up the cubes and arranges them to complete the picture.

Registration: Calculating the time it takes to arrange the image.

2.5 The first exploratory experience
For the purpose of confirming the research steps and determining the accuracy of the work and its suitability, the researcher conducted a reconnaissance experiment on archery players from the main research community at the Baghdad Municipality archery Club Stadium, where the instructions for the tests were clarified, and the purpose of conducting the reconnaissance experiment was to identify obstacles and difficulties to avoid. While implementing the tests, knowing the appropriate time to conduct the tests, and the suitability of the tests for the research community. The exploratory experiment was conducted on (2) players on Sunday afternoon, 9/7/2023, at the Baghdad Municipality Arch and Arrow Club in Al-Zawraa Park, to determine the validity of the tests and the work of the assistant team.

2.6 The second exploratory experiment
A week after conducting the first reconnaissance experiment, the second reconnaissance experiment was conducted under the same conditions, where force balance tests were conducted at eight o’clock in the morning on Sunday, 16/7/2023, and the purpose of conducting them was to stabilize the test.

2.7 Scientific foundations of tests
First: Validity of the tests
In order to verify the validity of the tests used by the research community, the researcher used (content validity), preparing a questionnaire form and presenting it to the experts, and after transcribing the data, the tests valid for measurement were accepted according to the opinions of the experts, as they obtained a percentage of (90%), as shown in Table (2).

Table 2: Shows the physical tests and skill tests used to measure muscular and skill ability for scoring.

<table>
<thead>
<tr>
<th>N</th>
<th>Tests</th>
<th>Measuring unit</th>
<th>Purpose of the test</th>
<th>Agreement percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aiming test</td>
<td>Point</td>
<td>Measuring aiming accuracy</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Hand grip test</td>
<td>Kg</td>
<td>Measuring hand grip strength</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>Finger tennis ball push test</td>
<td>Meter</td>
<td>Flexibility of fingers</td>
<td>85%</td>
</tr>
<tr>
<td>4</td>
<td>Hand-eye coordination test</td>
<td>Second</td>
<td>Hand-eye compatibility test</td>
<td>85%</td>
</tr>
</tbody>
</table>

Second: Reliability to testing
To ensure the reliability of the tests, the researcher repeated the test. The tests were applied to a sample of (4) players on Monday, 10/7/2023, and a week after the first experiment on Sunday, 16/10/2023, under the same conditions. The data was processed using the correlation coefficient. (Pearson) between the results of the first and second tests. The results showed high correlation coefficients, which indicates that the nominated tests have a high reliability coefficient, as shown in Table (3).

Table 3: Shows the reliability and objectivity of the tests:

<table>
<thead>
<tr>
<th>N</th>
<th>Tests</th>
<th>Reliability coefficient</th>
<th>Objectivity</th>
<th>Sig type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Finger tennis ball push test</td>
<td>0.94</td>
<td>0.91</td>
<td>Sig</td>
</tr>
<tr>
<td>2</td>
<td>Hand-eye coordination test</td>
<td>0.91</td>
<td>0.90</td>
<td>Sig</td>
</tr>
</tbody>
</table>

Third: Objectivity of the test
It is “the conformity of the opinions of more than one arbitrator when they evaluate the test” (9:155), since the objective test is one in which there is no significant discrepancy between the opinions of the arbitrators.

2.8 Pre-tests
Before starting to implement the exercises prepared for the training curriculum, the researcher conducted pre-tests for the research variables at the Baghdad Municipality Arch and Arrow Club Stadium for two days. A skills test for aiming accuracy was conducted on Monday 17/7/2023, and the next day physical tests (maximum strength) for hand grip and measuring Hand flexibility and measuring hand-eye compatibility on Tuesday, 18/7/2023. The researcher conducted pre-tests for the research community on the study variables, by using the mean, standard deviation, variance, and skewness coefficient, as in Table (4).
The training program was conducted from Saturday, 22/7/2023, and ended on Saturday, 16/9/2023. The training program is applied within the training unit for each week, applied on (Saturday, Monday, Wednesday) of weeks and included (24) training units, at a rate of (3) units per week, and it lasted for (8) weeks. The training curriculum lasted for (8) weeks and included (24) training units, at a rate of (3) units per week, applied on (Saturday, Monday, Wednesday) of each week.

- The duration of applying the hand exercises ranges from (15 - 25) minutes of the training unit, as shown in Appendix (1).
- Special exercises within the training units are performed immediately after the warm-up. In the manner of low-intensity interval training (30-50-65%) for strength, coordination and flexibility exercises.

2.10 Statistical methods

- Mean.
- Std. Deviation.
- Skewness.
- Variance.

3. Presentation, analysis and discussion of the results

3.1 Presenting the results: From Table (5), it is clear that the test mean reached (232.300) and the Std. Deviation (6.236) in the pre-test, while the mean reached (283.400) and the Std. Deviation (6.866) in the post-test for aiming accuracy.

As for the hand grip strength test, the mean was (26.800) and the Std. Deviation was (3.425) in the pre-test, while the mean was (34.800) and the Std. Deviation was (3.794) in the post-test.

As for the finger flexibility test, the mean was (1.97) and the Std. Deviation was (0.108) in the pre-test, while the mean was (2.51) and the Std. Deviation was (0.161) in the post-test.

As for the hand-eye coordination test, the mean was (160.40) and the Std. Deviation was (8.315) in the pre-test, while the mean was (95.300) and the Std. Deviation was (12.858) in the post-test.

The differences in the means for the pre- and post-tests to test the aiming accuracy were (51.1) points, the differences in the arithmetic means for the pre- and post-tests to test the hand grip strength were (8.00) kg, and the differences in the means for the pre- and post-tests to test the flexibility of the fingers were (0.54) cm, and the differences of the means for the pre- and post-tests of the hand-eye coordination test were (65.1) seconds.

The percentage of development in aiming accuracy was (21.997%), the percentage of development in grip strength was (29.857%), the percentage of development in finger flexibility was (27.411%), and the percentage of development in hand-eye coordination was (40.586%).

Table 4: Shows the means, standard deviations, variance, and skewness coefficient of the pre-tests of the research community.

<table>
<thead>
<tr>
<th>N</th>
<th>Tests</th>
<th>Measuring unit</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Variance</th>
<th>Skewness</th>
<th>Sig type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aiming test</td>
<td>Point</td>
<td>232.300</td>
<td>6.236</td>
<td>38.900</td>
<td>0.206</td>
<td>Non-sig</td>
</tr>
<tr>
<td>2</td>
<td>Hand grip test</td>
<td>Kg</td>
<td>26.800</td>
<td>3.425</td>
<td>11.733</td>
<td>0.192</td>
<td>Non-sig</td>
</tr>
<tr>
<td>3</td>
<td>Finger tennis ball push test</td>
<td>Meter</td>
<td>1.979</td>
<td>0.108</td>
<td>0.012</td>
<td>0.962</td>
<td>Non-sig</td>
</tr>
<tr>
<td>4</td>
<td>Hand-eye coordination test</td>
<td>Second</td>
<td>160.40</td>
<td>8.315</td>
<td>69.156</td>
<td>0.729</td>
<td>Non-sig</td>
</tr>
</tbody>
</table>

Table 5: Shows the results of the pre- and post-tests, the difference in the means, and the percentage of development of the research community.

<table>
<thead>
<tr>
<th>Tests</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>difference</th>
<th>Development percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Mean</td>
<td>Std. Deviation</td>
</tr>
<tr>
<td>Aiming test</td>
<td>232.300</td>
<td>6.236</td>
<td>283.400</td>
<td>6.866</td>
</tr>
<tr>
<td>Hand grip test</td>
<td>26.800</td>
<td>3.425</td>
<td>34.800</td>
<td>3.794</td>
</tr>
<tr>
<td>Finger tennis ball push test</td>
<td>1.979</td>
<td>0.108</td>
<td>2.51</td>
<td>0.161</td>
</tr>
<tr>
<td>Hand-eye coordination test</td>
<td>160.40</td>
<td>8.315</td>
<td>95.300</td>
<td>12.858</td>
</tr>
</tbody>
</table>

Table 6: Shows the regression coefficient, the f value, the t value, and the correlation relationship: the accuracy of aiming with the fist, the flexibility of the fingers, and the compatibility of the hand with the eye.

<table>
<thead>
<tr>
<th>N</th>
<th>Tests</th>
<th>Regression coefficient R</th>
<th>Modified coefficient of determination 2R</th>
<th>F value</th>
<th>t value</th>
<th>sig level</th>
<th>sig type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hand grip test</td>
<td>0.977</td>
<td>0.955</td>
<td>170.174</td>
<td>72.727</td>
<td>0.000</td>
<td>sig</td>
</tr>
<tr>
<td>2</td>
<td>Hand flexibility test</td>
<td>0.916</td>
<td>0.839</td>
<td>147.328</td>
<td>51.259</td>
<td>0.000</td>
<td>sig</td>
</tr>
<tr>
<td>3</td>
<td>Hand-eye coordination test</td>
<td>0.967</td>
<td>0.935</td>
<td>85.311</td>
<td>9.605</td>
<td>0.001</td>
<td>sig</td>
</tr>
</tbody>
</table>

From Table (6), we notice that there is a high multiple correlation of (0.977), while the value of the coefficient of determination 2R was (0.955), meaning that (finger strength and aiming accuracy) explain (95.55%) of the changes occurring in aiming accuracy, and the rest is (4.45%) is due to other variables, including random error.

From the table we notice that there is a high multiple correlation of (0.988), while the value of the coefficient of determination 2R was (0.977), meaning that (finger flexibility and aiming accuracy) explain (97.77%) of the changes occurring in aiming accuracy, and the rest is (2.23). It is due to other variables, including random error.
Analysis of variance measures the overall significance through Table (6). It is shown that the F value for the grip strength test is equal to (170.174), which is statistically significant at the significance level (0.05) because the probability value indicated as sig is equal to (0.00), which is less than (0.05), and is therefore significant.

The F value for the finger flexibility test is equal to (147.328) and is statistically significant at a significance level of (0.05) because the probability value indicated as sig is equal to (0.00), which is less than (0.05), which is therefore significant.

The F value for the hand-eye coordination test is equal to (170.174), which is statistically significant at a significance level of (0.05) because the probability value indicated as sig is equal to (0.00), which is less than (0.05), which is therefore significant.

From Table (6), it is clear that there is a statistically significant correlation between all variables, where: (at 0.05)

- The relationship between aiming accuracy and finger strength is a strong, positive, high correlation that is statistically significant at (0.05).
- The relationship between aiming accuracy and finger flexibility is a strong, positive, high correlation that is statistically significant at (0.05).
- The relationship between aiming accuracy and hand-eye coordination is a strong, positive, high inverse correlation that is statistically significant at (0.05). As shown in Figure (1):

![Fig 1: Shows the difference in the means between the pre- and post-tests for aiming accuracy](image)

4. Discussion of the results

Through table (5) and (6), it becomes clear to us that there are differences in the arithmetic environment in the percentage of development between the pre- and post-tests for all tests. The researcher attributes the reason to the application of members of the research community to the vocabulary of the training curriculum, which included special exercises for the fingers of the pulling hand (grip strength, flexibility, and compatibility). Intensely (50-65%) using the medium-intensity interval training method, “which aims to develop general endurance and specific endurance, and strength endurance, increasing the blood’s ability to carry large amounts of oxygen, obtaining a state of adaptation in the player, and delaying the onset of fatigue” (10: 257-258). Which has an impact because the hand muscles have a close connection with the nervous and musculoskeletal system to perform the tasks required of them. Ali Asghar points out that the strength of the hand grip is one of the important elements in performing fine movements that are repeated in various daily activities, as well as the fine motor skills begin to develop as the child grows and increase when he begins In learning some basic skills, the performance requirements for motor activities will increase. (12:7-8). Strength exercises had a clear effect through the results of the pre- and post-tests and a clear percentage of development in Table (5). The role of the hand grip in aiming accuracy shows us through the high percentage shown in Table (6). Michael and others pointed out, “Training with light and medium weights (30% - 50%) of the athlete’s ability, which is characterized by high speed, affects different parts of the force and speed curves. Also, the main goal of training with light and medium weights is to increase the rate of explosive force production.” (13:25). (The player pulls the string in a straight, horizontal line and parallel to the arm holding the bow grip until it reaches the fixation point under the chin. In order to achieve this, work must be done by bringing the upper back muscles to the shoulder blade bones inward towards each other, and this should be accompanied by relaxation of the non-working muscles of the body. At this stage, grip strength is required because the pulling process depends on it (4:9)).

The flexibility exercises, which included stretching exercises for the fingers, phalanges, and palm muscles of the various muscle groups and different ligaments in the hand, using and without tools, and (negative and positive stretching) exercises within the framework of developing flexibility in the form of selected groups that are repeated during training, taking into account the gradual progress until they reach the end. (Works Exercises to lengthen the muscles, and through the lengthening achieved through these exercises, flexibility and strength are achieved at the same time. (6:299). This was verified by the results of the finger flexibility test, as the exercises had a strong positive effect, as shown in Table (6). “Training has the factors that determine movement through the use of the necessary muscles during competition, and this in turn leads to increased efficiency through economy of effort because it applies economic force and masters the process of successive contraction and relaxation of the motor units, that is, ideal contraction and relaxation of the motor units” (11:40).

The coordination exercises between the hand and the eyes, which ensured benefits for the sensory and motor receptors, and the combination of speed, elasticity, and strength of the hand muscles, and as Michael pointed out, “among the benefits of the exercises for the muscle sensory receptors is the speed of blood circulation, in addition to the coordination of muscle action, and it also helps to relax the muscles, which are The importance of using the sensory autonomic system also in benefiting from the neural actions reflected through both the muscle spindles and the Golgi tendon organs that respond to the change in muscle length” (14:25), and this was achieved using finger-eye coordination exercises through the results in the table (14:25).

Adel Abdel Basir believes that each group of exercises must be prepared in a way that gives an effective effect, that is, the greater the coordination between the muscles participating in the motor performance on the one hand and the muscles leading to the movement and the muscles opposing it on the other hand, the greater the production of
power and leads to the development of each type-specific abilities. Effectiveness and practiced activity (3: 108). As for shooting accuracy, the special exercises for the pulling hand (strength, flexibility, and coordination) contributed to the development of performance and had a major positive role in the development of shooting accuracy. Thus, the research achieved its goals.

5. Conclusions and recommendations

5.1 Conclusions
1. There is a strong moral correlation between grip strength and aiming accuracy.
2. There is a strong significant correlation between finger flexibility and aiming accuracy.
3. There is a strong moral correlation between hand-eye compatibility and aiming accuracy.
4. The exercises on the pulling fingers had a positive impact on developing performance and aiming accuracy.

5.2 Recommendations
1. The researcher recommends using these exercises for other categories with archery for both genders.
2. It can be used in other individual and group activities because it has an effective positive impact.
3. Conduct similar studies for different throwing events.

6. References
4. Dahham AH. The relationship between some types of special strength of the arms in shooting and the effectiveness of the archery for advanced athletes in Baghdad clubs: College of Physical Education, University of Babylon; c2011.
5. Al-Issawi MAA. Physical Fitness Tests, Department of Physical Education and Sports Sciences - College of Basic Education, Al-Mustansiriya University; c2018.

Appendix: Example of exercises

<table>
<thead>
<tr>
<th>N</th>
<th>Exercise</th>
<th>Purpose of the exercise</th>
<th>Repetition and rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulling exercises with the fingers of the hand pulling outward and returning inward with the help of the other hand</td>
<td>Flexibility of the fingers + strength</td>
<td>((10 \times 3) \times 2)</td>
</tr>
<tr>
<td>2</td>
<td>Squeeze the tennis ball gently</td>
<td>Flexibility of fingers + grip strength</td>
<td>((10 \times 3) \times 2)</td>
</tr>
<tr>
<td>3</td>
<td>Arranging colored cubes (pictures), formations, models</td>
<td>Hand-eye coordination</td>
<td>The speed of creating things at full speed</td>
</tr>
<tr>
<td>4</td>
<td>Gently push the edge of a table with your fingers.</td>
<td>Flexibility of the fingers + strength</td>
<td>((15 \times 3) \times 2)</td>
</tr>
<tr>
<td>5</td>
<td>Use a grip device and finger pressure for the pulling hand</td>
<td>Hand strength + flexibility</td>
<td>((10 \times 3) \times 2)</td>
</tr>
<tr>
<td>6</td>
<td>Use clay to form small balls. Make formations of these balls</td>
<td>Developing eye-hand coordination</td>
<td>Work as quickly as possible</td>
</tr>
<tr>
<td>7</td>
<td>Throwing a tennis ball at colored cups from a distance of (5m, 10m, 15m)</td>
<td>Hand compatibility with yin + aiming accuracy</td>
<td>Each distance is 15-20 throws</td>
</tr>
<tr>
<td>8</td>
<td>Flexion and extension of the joints and phalanges of the hand</td>
<td>Calming and relaxing the fingers</td>
<td></td>
</tr>
</tbody>
</table>

Note about exercise intensity
- First and second weeks 30%.
- Third and fourth weeks 40%.
- Fifth and sixth weeks 50%.
- Seventh week 60%.
- Eighth week: 65%.